

B⁰/B⁺ Meson Lifetimes using Semileptonic Decays in CDF Run II

Satoru Uozumi University of Tsukuba, Japan

For the CDF collaboration

April-8 2003 APS @ Philadelphia

Lifetime with Semileptonics

- Heavy Quark Expansion model predict the lifetimes for different B hadron species
 - $\tau(B_c) << \tau(\Xi_b^{\ 0}) \sim \tau(\Lambda_b)$ $< \tau(B^0) \sim \tau(B_s) < \tau(B^-)$ $< \tau(\Xi_b^{\ -}) < t(\Omega_b)$
 - $\tau(B^+)/\tau(B^0)$ = 1.00 + 0.05 x (f_B/200 MeV)²
 - $\tau(B_s)/\tau(B^0) = 1.00 \pm 0.01$
 - $-\tau(\Lambda_b)/\tau(B^0) \sim 0.9$

It will be a good test for the HQE to measure these values directly

To measure B⁰/B⁺ lifetime,

- 1. I+D⁰ sample; fit B^{0/+} average lifetime
- 2. I+D*- sample; fit B⁰ lifetime
- I+D⁰ sample(D*- excluded);
 fit B+ lifetime
- 4. Get B+/B⁰ lifetime ratio

Apr-8 2003 APS meeting

The CDF-II Detector

Apr-8 2003 APS meeting

Analysis overview

- (1) Reconstruct μ+D⁰ signal
 - Divide D⁰ and D* candidates
 - Estimate sample composition
- (2) Calculate decay time
- (3) Estimate background
 - Use D⁰ mass sideband
- (4) Estimate the bias to the decay time distribution
 - K factor
 - SVT impact parameter cut
 - Resolution smearing
- (5) Extract the lifetime
 - Unbinned likelihood fit

μ+D⁰ sample

- Data is from μ+SVT dataset
 SVT...Silicon Vertex Tracker
 measures impact parameter
 at the trigger level
- Lepton+SVT trigger
 - Require 4 GeV lepton
 + 2 GeV SVT track
 (=charm daughter track)
 which have
 120 μm < |d₀SVT| < 1 mm
 - Efficiently collect semileptonic B decay signal
 - SVT impact parameter cut biases B lifetime distribution

Signal Reconstruction

Reconstruct $\overline{D}{}^0 \rightarrow K^+ \pi^-$ around the μ , then divide candidates into D^0 and D^{*-} sample

$$-B^{0/+} \rightarrow \mu^+ \nu \overline{D^0} X, \overline{D^0} \rightarrow K^+ \pi^- (D^{*-} \text{ excluded})$$

$$-B^{0/+} \rightarrow \mu^+ \nu D^{*-} X, D^{*-} \rightarrow \overline{D}{}^0 \pi, \overline{D}{}^0 \rightarrow K^+ \pi^-$$

μ and K have charge correlation

$$-Q_1 = Q_{\kappa}$$
: Right sign (black points)

$$-Q_1!=Q_K$$
: Wrong sign (blue histogram)

Satoru Uozumi

Apr-8 2003 APS meeting

Missing momentum (K factor)

- Real decay time $ct = L_B m_B / p_B$
- B isn't fully reconstructed
 - We can't measure p_B but p_{ID}

$$ct = L_B m_B / p_B$$
$$= L_B m_B / p_{ID} \cdot K$$
$$= ct^* \cdot K$$

ct*... pseudo decay time

- Estimate
$$K = p_{ID}/p_B$$
 from MC

- K factor depends on
 - -Generated p_{TB} distribution
 - -Sample composition
 - -Decay model
 - -Trigger/offline cuts

Bias from the SVT d₀ cut

- Decay time distribution
 - $dN/dt = e^{(-t/\tau)}$
- SVT impact parameter cut
 - $-120 \, \mu \text{m} \le |d_0^{\text{SVT}}| \le 1 \, \text{mm}$
 - Changes the distribution
 - $dN/dt = e^{(-t/\tau)} x eff(t)$
 - Estimate this efficiency curve from MC
- SVT bias depends on
 - Decay kinematics (e.g. $p_T, \Delta \phi$)
 - SVT tracking efficiency
 - SVT impact parameter resolution

Lifetime fitting (Unbinned likelihood fit)

- Signal Likelihood
 - $L(t', \sigma t'; \tau) = e^{(-t/\tau)}$
 - x eff(t)
 - \otimes D(K)
 - \otimes R(t',t; $\sigma_{t'}$)
- Likelihood distribution
 - Physics (exponential)
 - Apply SVT efficiency
 - Apply K factor
 - Apply resolution function

Fitting Results (inclusive I+D⁰)

- Fitting result shows statistically significant difference with the world average
- It looks there are some systematic effects from unknown sources
- For now we will not show any fitted lifetime from semileptonics

(not only B^{0/+}, but also B_s , Λ_b)

Points: data

Blue: signal likelihood

Red: background likelihood

Black: signal + background

Apr-8 2003 APS meeting

Fitting Results(separating μ+D⁰/D*)

- $c\tau(B^0)$: xxx $\pm 17.3 \mu m$
- cτ(B+) : xxx + 13.5 μm
- $c\tau(B^+) / c\tau(B^0) : xxx + 0.066$

Apr-8 2003 APS meeting

Summary

- We are measuring B⁰/B⁺ lifetimes using the semileptonic decays in CDF Run II
- We have large and clean sample (~8K each for both e,μ+D⁰⁾ in ~ 70 pb⁻¹ of the data
- There are some important issues for measuring lifetime
 - Correct for the missing momentum (K factor)
 - Correct for the bias from the SVT impact parameter cut
- Studies are ongoing for the precise B lifetime measurement